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Introductory comments

I We want to estimate a complete geophysical field from massive,
heterogeneous, observational data.

I The result is input to further science investigations and applications, so
uncertainties must be propagated rigorously.

I Uncertainties should also be minimized so that conclusions, and decisions
based on them, are as robust as possible. Need to leverage spatial and
temporal dependencies.

I Challenge: Accomplish this in the face of massive data volumes and
complex calculations required.
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Carbon cycle science
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Data fusion:
Produce single data set of optimal estimates 
of concentration at specified resolution along 
with uncertainties.

Goal:
Understand the processes that control flux of CO2 between the 
ocean/land and the atmosphere.

Strategy:
Experiment with flux model (and transport model) to make modeled 
concentrations agree with observations of concentrations, or 
produce fluxes that agree with inferred fluxes. 

(unknown)

(unknown)

Hypothesis 
testing
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OCO-2 and AIRS data

I OCO-2 and AIRS both observe column average CO2 mole-fraction, but are
sensitive to different parts of the column.

I AIRS has a 90 km footprint, and OCO-2 has (about) a one km footprint.

I Their measurement errors and patterns of missingness are also different
because they exploit different technologies and retrieval algorithms.
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OCO-2 and AIRS data

PPM

AIRS mid-tropospheric
CO2, October 30 through
November 2, 2014.
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OCO-2 and AIRS data

PPM

AIRS mid-tropospheric
and OCO-2 total column
CO2, October 30 through
November 2, 2014.

OCO-2 footprint size
x10 for visualization.
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OCO-2 and AIRS data

PPM

AIRS mid-tropospheric
and OCO-2 total column
CO2, October 30 through
November 2, 2014.

OCO-2 footprints actual
size.
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OCO-2 and AIRS data

AIRS footprint grid OCO track

90 km

~ 1500 km

AIRS CO2
footprint OCO CO2

footprints

2.25 km

1.1 km
OCO CO2
footprints

lower
atmosphere
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Exploiting synergy

I Instrument sensitivities are similar at and above the mid-troposphere, but
not below: OCO-2 is sensitive down to the surface, but AIRS is not.

I To the extent that CO2 mole-fraction near the surface and in the
mid-troposphere are correlated, we should be able to improve estimates of
both by exploiting this correlation.

I We should also be able to
I exploit the coverage of AIRS and the accuracy of OCO-2
I exploit spatial and temporal correlations within and between data sets.
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Exploiting synergy

Can these data be combined to create a more complete data set with
information about CO2 closer to the surface?
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Exploiting synergy

1000 hPa

500 hPa

300 hPa

I If we knew the “true" values of total-column and mid-tropospheric
mole-fraction at a location s =lat,lon, Y1(s) and Y2(s), then we could
compute

YLA(s) =
(1000− 300)Y1(s)− (500− 300)Y2(s)

1000− 500
.

I Can we get estimates, with uncertainties, of (total-column, mid-trop) pairs
at reasonable resolution so we can compute this?
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Example

I Accumulate 12 days of AIRS and OCO-2 data into three, four-day blocks:
Oct 30 - Nov 2, Nov 3 - 6, Nov 7 - 10.

I Run Spatio-Temporal Data Fusion algorithm (STDF) on the three blocks,
producing three output data sets, one for each block. (See Nguyen,
Katzfuss, Cressie, and Braverman (2014) for details.)

I STDF accounts for spatial correlations among footprints for both
instruments (including corrections for different sizes and orientations) and
for temporal correlations from time block to time block.

I Timing: 90 minutes to process the three blocks on a single, Intel Xeon 2.0
GHz processor.

I Crucial assumptions: uncertainty on AIRS datum is 1.5 ppm, and
uncertainty on OCO-2 datum is 2 ppm.
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Example

Fused estimate of lower-atmosphere CO2, Oct 30 - Nov 2, 2014:

PPM

Produced using STDF
with analysis resolution
≈ 30 km.

Visualization resolution
≈ 120 km.

How to validate estimates?
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Example

Uncertainties of fused uncertainties, Oct 30 - Nov 2, 2014:

PPM

Lower uncertainties
coincide with OCO-2 tracks.

How to validate
uncertainties?
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Example

Caveats:

I OCO-2 data are very preliminary: just a placeholder here to show data
fusion machinery.

I The formula for computing lower-atmosphere mole-fraction is
unrealistically crude.

I Uncertainties on the input data are unrealistic (but the best we’ve got right
now). This is a major issue.

I We have built a simulation system for characterizing the performance of
STDF on synthetic “truth" data, and are in the process of assessing how
various design choices affect our results.
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Data fusion strategy

I In order to do this calculation, we need to infer the true mole-fractions of
(total-column, mid-trop) pairs on a fine grid of locations.

I We define that grid by partitioning the world into very small hexagonal tiles
called basic areal units (BAU’s) Notionally, each BAU contains a pair.

· · ·· · · · · · · · ·· · · · · ·
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· · · · · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·

Y (s) = (Y1(s), Y2(s))
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Data fusion strategy

I Since this bivariate field is unknown, we model it with a random vector that
behaves according to a probability distribution.

I We use Bayes’ Theorem: before acknowledging the observations, we
assume a “prior" distribution.

I After seeing the data, we update that distribution and call it the “posterior".

I We report the mean vector and covariance matrix of the posterior
distribution as our inference.
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Spatial-statistical data fusion framework
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Spatial-statistical data fusion framework
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Spatial-statistical data fusion framework
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Spatial-statistical data fusion framework
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Spatial-statistical data fusion framework
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Spatial-statistical data fusion framework
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Ŷ2

“Prior” 
distribution of 

Y, P(Y)

Create 
observation 

vector, Z

AIRS 
observations

OCO-2 
observations

Estimate parameters of 
statistical model 

relating Y to Z, P(Y|Z)

Use model to 
estimate Y 

from Z

· · ·· · · · · · · · ·· · · · · ·

s1
s2

s3
s4

s5
s6

s7
s8

s9
s10

s11
s12

s13
s14

s15
s16 s17

s18
s19

s20
s21

s22
s23

s24s25 · · · · · · · · · · · · · · ·
· · · · · · · · ·

· · · · · ·

sND· · ·· · · · · ·

· · · · · ·
· · · · · ·

· · ·

· · ·
· · · · · ·

· · · · · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·

Y = [Y1(s1), ... , Y1(sND
), Y2(s1), ... , Y2(sND

)]

Y ⇠ N(µY|Z,⌃Y|Z)

24



Spatial-statistical data fusion computation

I At 30 km analysis resolution there are 660,000 BAU’s over the globe. (At 1
km, there are about 700,000,000.)

I Over a four day time block (the temporal snapshot we use), there are about
180,000 observations total from both instruments.

I The formulas for the posterior mean and covariance of the field given the
observations can’t be implemented as-is: the problem is too big.
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Spatial-statistical data fusion computation

I Impose some additional constraints and modeling assumptions on Y.

I Key: spatial relationships in the field Y admit a simpler, low-dimensional
representation in the form of a hidden spatial structure variable, η, defined
relative to a set of fixed spatial basis functions.

I Posterior distribution of Y given Z is found by first obtaining an estimate of
the posterior distribution of η given Z, then reconstructing the posterior
distribution of Y from it.
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Spatio-temporal data fusion

I Temporal dependence from time block to time block is exploited by Kalman
filtering (or, in our case, smoothing) η.

Posterior for 
spatial structure
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Generate 
estimated field and 

its uncertainty
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Posterior for  
spatial structure
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Validation example

I Validation of STDF estimates of lower-atmosphere CO2 based on AIRS
and Japan’s Greenhouse Gases Observing Satellite (NASA retrievals).
See Nguyen et al. (2014) for details.
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Take home

I Data fusion is necessary to realize benefits of synergy among NASA
missions.

I What is new about this data fusion technology:
I based on uncertainty quantification and minimization
I uses a formal probabilistic framework that is coherent
I exploits spatial and temporal correlations to drive uncertainties down
I corrects for heterogeneous footprints
I feasible for massive data sets and operational implementation.

I Better results are possible if mission provide formal uncertainty estimates
for their retrieivals.
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Other applications and extensions

Other possible applications (infusion):

I Aerosol optical depth from MISR and MODIS-Terra (case study in Nguyen,
Cressie, and Braverman, 2012).

I Sea-surface temperature from MODIS-Terra, MODIS-Aqua, VIIRS, and
AMSR-2.

I Surface temperature from AIRS, CrIS (and IASI?).

I OCO-2 CO2 and fluoresence, SMAP soil moisture, and MODIS fraction
photosynthetically active radiation, and leaf-are index (possible future).
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Other applications and extensions

Extensions:

I Fusion of multivariate quantities, e.g, atmospheric profiles. See Nguyen,
Cressie, and Braverman (2017).

I Adaptive grids: high-resolution in region of interest, lower resolution
elsewhere.

I Data fusion in distributed environments: data fusion without moving data.
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Spatial inference and data fusion

Infer the true field from two different 
remote sensing images of it at a 

single time.

(Single process, multiple source 
spatial data fusion)

Infer the true field (single quantity) 
from one remote sensing image of 

it at a single time point.

(Fixed Rank kriging)

Infer true values of two fields from 
two different remote sensing 

images at a single time.

(Muliple process, multiple source 
spatial data fusion)

Infer the true field from two different 
remote sensing images of it at 

multiple time points.

(Single process, multiple source 
spatio-temporal data fusion)

Infer the true field (single quantity) 
from one remote sensing image of 

it at multiple time points.

(Fixed Rank filtering or smoothing)

Infer true values of two fields from 
two different remote sensing 

images at multiple time points.

(Muliple process, multiple source
spatio-temporal data fusion)

Exploit spatial 
correlations

Exploit spatial and 
temporal correlations

t = 1

t = 2

t = 3

t = 4

True field 1 True field 2Instrument 1 Instrument 2
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Bayes’ Theorem

I Given two events, A and B,

P(B|A) = P(B ∩ A)
P(A)

=
P(A|B)P(B)

P(A)
.

I Example: B = event that the freeway is jammed, A = event the on-ramp is
jammed.

P(freeway jammed|on-ramp jammed) =
P(A|B)P(B)

P(A)
,

=
P(on-ramp jammed|freeway jammed)P(freeway jammed)

P(on-ramp jammed)
.
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Spatial dimension reduction

= spatial location, color = value

0.0 0.5 1.0 1.5 2.0

0.
5

1.
0

1.
5

2.
0

0 1

⌫ = (⌫(s1), . . . , ⌫(s10))
0

+ = basis center,

I Spatial field: values at ten
locations, ν.

I Spatial structure described by
spatial covariance matrix, Σν

(10× 10).

I Basis centers are reference
locations.
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Spatial dimension reduction

0.0 0.5 1.0 1.5 2.0

0.
5

1.
0

1.
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2.
0

0 1

s1

d11

d13

d14
d12

+ = basis center,

= spatial location, color = value

I Spatial field: values at ten
locations, ν.

I Spatial structure described by
spatial covariance matrix, Σν

(10× 10).

I Basis centers are reference
locations.

I Encode each location as inverse
of distances to four basis centers:

S(s1) = (1/d11, 1/d12, 1/d13, 1/d14).
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Spatial dimension reduction
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Basis function matrix:
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= spatial location, color = value
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Low-dimensional representation:
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1
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I Estimate η by least-squares (for example).

I Linearity: ν = Sη =⇒ Σν = SΣηS′. Ση is only 4× 4.
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Spatial dimension reduction
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= spatial location, color = value
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⌫

I Reconstructed field is an approximation to the original, but much more
parsimonious.
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